Virtual Water: A Critical Assessment

Hamed Ghoddusi (Stevens Institute of Technology, NJ), Mohammad Afkhami (Stevens Institute of Technology, NJ), and Filippo Pavesi (University of Verona, Italy) IWREC 2016

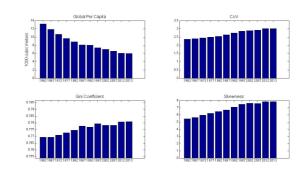
Agenda

- Reminder about the origins of virtual water (VW)
- Possible criticisms and concerns
- Empirical evidence
- Conclusion and future steps

and Pavesi (SIT)

Motivation: Global Water Resources

ddusi, Afkhami, and Pavesi (SIT)


- Global versus local endowment of fresh water
 - Sufficient per capita renewable fresh water resources at the global level (6000 cubic meters)
 - Spatial mismatch: uneven distribution of water resources
 - Decreasing endowment and increasing unevenness over time
- Popular quote: "many of the wars of the twenty-first century will be about water rather than oil"

Virtual Water

Sep 2016 3 / 29

Cross Country Renewable Water Endowments Over Time

Virtual Water

Raw Data Source: World Bank

Ghoddusi, Afkhami, and Pavesi (SIT)

Sep 2016 4 / 29

Sep 2016 2 / 29

Virtual Water (VW)

- A term for quantifying water embedded in goods (Allan 1994)
- The promise: the uneven endowment problem can be mitigated through indirect trade of water:
 - Water scarce countries can offset their shortage by importing water intensive goods

Virtual Wate

Sep 2016 5 / 29

Sep 2016 7 / 29

• Largest group of traded VW: cereals, meat, and oil seeds

VW Theory from Economic Theory's Perspective

- Positive: can the trade of water be explained using international trade models?
- Normative: what are welfare effects of observed water trade?
- Policy: what are optimal agriculture trade policies to promote efficient virtual water trade?

Virtual Wate

Sep 2016 6 / 29

Sep 2016 8 / 29

Extensive Literature on Evaluating VW

- Theoretical trade models: Ansik (2010), Reimer (2012)
- Global empirical evidence: Delbourg and Diner (2015), ...
- Regional empirical studies: Hakimian (2003), Ma et al (2006), ...

Virtual Water

Relevant Trade Theories for (Embedded) Water Trade

- Ricardian: water productivity differences
- Heckscher Ohlin (HO): water endowment differences
- Trade costs and gravity model: lower distance and trade costs
- Krugman/Melitz: economy of scale and monopolistic competition • Crops diversity: local climate and soil characteristics

Virtual Water

The Heckscher Ohlin Model

The Heckscher Ohlin Model

• 2*2*2 trade model:

lusi, Afkhami, and Pavesi (SIT)

- $\bullet\,$ Countries X and Y with different endowments of water and capital $\bullet\,$ Goods 1 and 2
- Production factors water (W) and capital (K)
- $\bullet~$ Country X is capital abundant and country Y is water abundant. i.e., $\frac{K_X}{W_X} > \frac{K_Y}{W_Y}$
- Prediction: water-rich country will export water-intensive goods

Virtual Water

Sep 2016 9 / 29

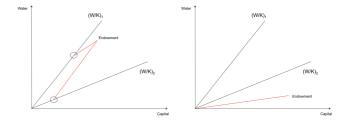


Figure: Cone of Diversification

Virtual Water

Sep 2016 10 / 29

Sep 2016 12 / 29

Vague or Weak Aspects

- Definition of "water abundant"Empirical behavior: water versus land endowment
- Possibility of reverse flow of water (from water-poor to water-rich countries)

Virtual Water

- Socal versus global water scarcity
- Green versus blue water

oddusi, Afkhami, and Pavesi (SIT)

A trade model with under-priced factors

Critical Review of VW

Critical Point #1: Definition of Abundance

Psuedo-Trade

oddusi, Afkhami, and Pavesi (SIT)

• What is a water abundant country is one which has a high level of: • Per-capita water endowment?

Virtual Water

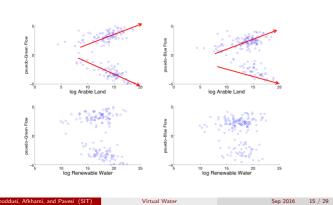
Sep 2016 13 / 29

- Ratio of water to other production factors?
- Endowment of water and land?
- Absolute (no per-capita) water endowment?
- Efficiency in water use?

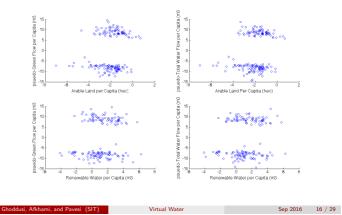
ddusi, Afkhami, and Pavesi (SIT)

• Arguments and models for each case

In order to assess the logarithmic relation between traded flows and arable land, a psuedo logarithmic function is introduced:


Virtual Water

$$Pseudo - flow = \begin{cases} -\log(|Netflow|), & \text{if } NetFlow \le 0\\ \log(Netflow), & \text{otherwise} \end{cases}$$
(1)


Sep 2016 14 / 29

Arable Land vs Water Flow

usi. Afkhami

Arable Land vs Water Flow

Critical Point #2: Possibility of a Reverse Flow

- Net flow of water trade: from arid to water-abundant regions!
- Pressure on water resources of water-poor country
- Empirical evidence/observations

and Pavesi (SIT)

- North-South China, East India, ...
- Water-poor countries: e.g., Mongolia, Afghanistan

Virtual Water

• Water-abundant countries: Japan, UK.

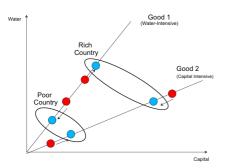
HO Model of Reverse Trade

- Two countries:
 - Country A: low level of water, lower level of capital
 - Country B: high level of water, higher level of capital
- Autarky:
 - Country A: consumes water-intensive goods
 - Country B: consumes capital-intensive goods
- Trade:

Sep 2016 17 / 29

Sep 2016 19 / 29

• Both countries consume the same type of goods; however, B consumes a scaled bundle


Sep 2016 18 / 29

Virtual Water

• A: net exporter of water, B: net importer of water

Consumption Bundles Before and After Trade

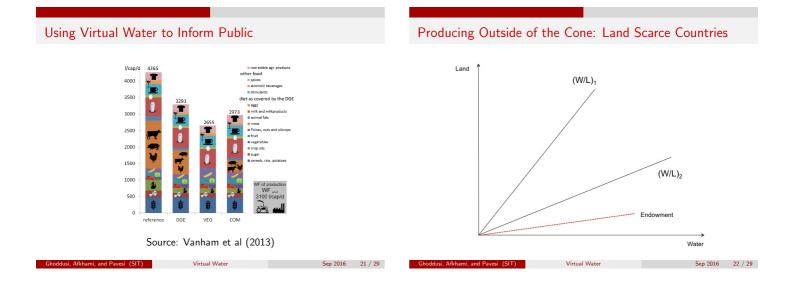
si, Afkhami, and Pavesi (SIT)

Virtual Water

Critical Point #3: Local and Global Scarcity of Water

Using Virtual Water to Inform Public

and Pavesi (SIT)


ual water content	for selected products	Virtual water conte
[m ³ /ton] (Zimmer D., and D. Renault, 2003)		[m3/person/d
		(D. Renault, W.W. Wal
Beef	13 500	Diet 0 (reference USA)
Pork	4 600	Diet 1 25% reduction ani
Poultry	4 100	product
Soybean	2 750	Diet 2 poultry replaces 5 beef
Eggs	2 700	Diet 3 vegetal produ replaces 50% red meat
Rice	1 400	Diet 4 50% reduction
Wheat	1 160	animal products
Milk	790	Diet 5 vegetarian
		Diet 6 Survival

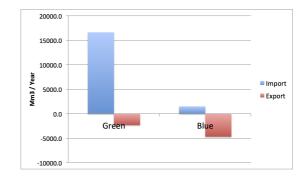
Virtual Water

2000

4.6 4.1

Sep 2016 20 / 29

Critical Point #4: Source of Water


lusi, Afkhami, and Pavesi (SIT)

- Depletion of underground water resources is a chief concern: blue water
- Green water use is mainly limited to agriculture
- Environmental effects of green water footprint less severe (also not received an attention in the literature)

Virtual Water

Asymmetric problem: flow (green) versus stock (blue)
One side solving an optima resource extraction problem!

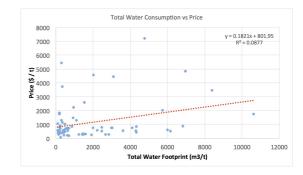
Example: Iran's Import and Export of Virtual Water

Sep 2016 23 / 29

Critical Point #5: Water Price

- HO model assumes a market clearing constraint
- Local scarcity determines the optimal bundles of production

Virtual Water


Sep 2016 25 / 29

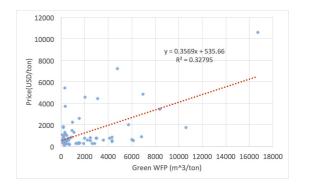
Sep 2016 27 / 29

- Water price is zero or near-zero in many regions
- Signal of scarcity?

and Pavesi (SIT)

Total Water Content and Crop Prices

Data Source: IMF and FAO


Blue Water Content and Crop Prices

usi, Afkhami, and Pavesi (SIT)

Data Source: IMF and FAO

Green Water Content and Crop Prices

Sep 2016 28 / 29

Sep 2016 26 / 29

Conclusion

- The potential of virtual water trade to reduce water endowment can be limited by land (and possibly capital and labor) endowments.
- Definition of water abundance: "total water endowment", "relative water endowment", and "per capital water endowment"
- The contrast between local and global scarcity of virtual water
- Better measures to compare blue/green water content to quantify the pattern of trade and the pressure on water resources of different countries.

Ghoddusi, Afkhami, and Pavesi (SIT) Virtual Water Sep 2016 29 / 29